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Scattering solutions are obtained for the Biedenharn Hamiltonian which possesses R± symmetry. These 
are alternatively written in the form of an operator times a plane-wave spinor, and in this form are briefly 
compared with the exact Dirac solutions and the Sommerfield-Maue solutions. 

I. INTRODUCTION 

RECENTLY, Biedenharn1 developed a "symmetric 
Dirac-Coulomb Hamiltonian" which has the 

symmetry of the four-dimensional rotation group R* 
and differs from the usual Dirac-Coulomb Hamiltonian 
by order (aZ)2. The R^ symmetry of the corresponding 
nonrelativistic (Schrodinger-Coulomb) problem per
mits separation of the wave equation in parabolic 
coordinates which in turn provides continuum scatter
ing solutions having a simple form.2 However, the 
Dirac-Coulomb Hamiltonian does not possess this 
symmetry, is separable only in spherical coordinates, 
and the continuum scattering solutions are given only 
in terms of an infinite series of angular-momentum 
eigenfunctions. For purposes of calculation, various 
approximations of the exact continuum scattering 
solution must be made. 

The Dirac-Coulomb Hamiltonian is simpler than the 
Biedenharn symmetric Hamiltonian, but the angular-
momentum eigenfunctions of the former are more 
complicated than those of the latter. Thus, in terms of 
approximation physics, the availability of the Bieden
harn symmetric Hamiltonian allows one to move the 
approximation from the eigenfunction to the Hamil
tonian, where it may be discussed more fluently by 
perturbation methods. 

The Biedenharn symmetric Hamiltonian has recently3 

been discussed in some detail, and the angular-momen
tum eigenfunctions have been displayed. The purpose 
of this note is to explicitly exhibit the scattering 
solutions for this Hamiltonian. These solutions are also 
cast into the form of an operator acting on a plane wave 
spinor of arbitrary polarization. This form is particularly 
convenient for calculating matrix elements, and allows 
a simple treatment of elastic scattering.4 Also, a direct 
comparison with the corresponding form for the Dirac-
Coulomb Hamiltonian4-6 shows the simplifications that 
occur for the continuum scattering solutions of the 
symmetric Hamiltonian. 

* Contribution No. 1488. Work was performed in the Ames 
Laboratory of the U. S. Atomic Energy Commission. 
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2. THE SCATTERING SOLUTIONS 

In the system of units for which h—m=c=l, the 
Biedenharn symmetric Hamiltonian is7 

HB= —ipi(T'V+pz~-aZ/r+p2<T'fK/r 

X{[\+(aZ/Kyj-\). (1) 

Here, the Dirac operator K is defined by 

#=p 3(cr-L+l) , (2) 

and the Coulomb potential is attractive for Z>0. By 
the usual methods7 we find that the general continuum 
scattering solution that asymptotically behaves like a 
"plane wave" of energy E and momentum p traveling 
in the p direction plus an outgoing spherical wave, is 
given by8 

* = 4ir( — ) E ^ 
\2EpJ m,k,ix 

•*A*cp(*),i,y;/*-w,f»] 

X 7 I ( ^ t f ) ^ ( r , £ ) . (3) 
Here , / (* )= |A[+i (5*- l ) > i= [* | - J ,*=±l ,=fc2 , •;-, 
Sk=^=l for &2E0, fx is a half-integer, and the summation 
extends over all k, m=dbj, and JJL such that 
\fi—m\ <l(k). The phase factor Ak is given by 

Ak^fl-BigT(\k\+iv)+iir(\k\+sk)f (4) 

e^=e-i^ei7ra-sk)/2^k2+X2^-i\/py(\k\ +iV) , 

where the interaction strength X and the Born param
eter v are defined by 

X=aZ, p=aZE/p. (5) 

The constants cm are limited only by the condition 
2mmttn Cm Cm -*-• 

In Eq. (3), the angular-momentum eigenfunction 
\/^(r,£) satisfies 

(H B -£ ) iMr ,E) = 0, (A:+A)^(r,E) = 0, (6) 

/ ' 
^^{j,E)^v^' {x,E')ir=b^hk,vh{E-E'). 

It is explicitly given by 
gk(E,f)XJc"(f) 

^"(r ,£) = 
/ gk{E,r)xk"{r) \ 

\ifk(E,r)X-Ar)) 
(7) 

7 In general, we follow the notation employed by M. E. Rose, 
Relativistic Electron Theory (John Wiley & Sons, Inc., New York, 
1961). 

8 The normalization of Eq. (3) is chosen so that the coefficient 
of the plane wave asymptotically approaches one. 
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in which 

***(>) = E Cll{k)^j]H-T,r'}Yl^~^{f)xT, 

g*(JE,r) = | > ( £ + l ) A ] * { }+, 

/*(£,r) = f[>(-E-l)/ ir]*{ }_, 

{ }±=[^/2|r(|^|+zV)||x|i^-vr(2|^i+i)] 

X{(\k\+iv)e^e-xl2 

XiFi(\k\+l+iv,2\k\+l,x)±c.c.}, 

x= —2ipr. 

By means of the methods described in Ref. 6, the 
scattering solution given by Eq. (3) may be written in 
the Johnson-Deck form 

^ = {N+i\My,u' (p-f)+L[jj- {p-?)~]{vp)}U{p), (8) 

and consequently all the results4 pertaining to this form 
may be used. Here, U(p) is a plane wave spinor of 
arbitrary polarization. The functions N, M, and L are 

given by 

00 

tf=2E {-\)kxh~lexl*ev*i2 

x[r(&-^/r(2&+i)](&2+x2)^ 
XiF1(k-ip2k+l,x)ZP^1'($.f)-Pk'($'t)l, (9) 

M^-iT(l--ip)ev*l2ei»-TiF1tl+ip,2,i(pr-p'r)'], (10) 

L = i ( i ^ o - i V ) . (11) 

For A=0, the series for iV can be summed to yield 

Nx==o=T(l-iv)ev^ei^1F1ZivXi(pr-Vr)l. (12) 

In Eq. (9) the prime indicates the derivative of the 
Legendre polynomial P with respect to its argument 
(p-r). 

These functions may now be directly compared with 
the corresponding ones for the Dirac-Coulomb case6 for 
which all three functions are given as infinite series. 
The main difference is that the scattering solution for 
the Biedenharn Hamiltonian has simpler parameters in 
the 1F1 functions and the function M is expressible in 
closed form. In fact, M is exactly the same as that for 
the Sommerfeld-Maue approximation, while TV" and L 
differ from the Sommerfeld-Maue approximation by 
order X2. 
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A new method in the theory of unstable particles is introduced. It is applied in this paper to a simple model 
to show how the exponential regime of the decay can be isolated systematically. It is further shown that our 
method prescribes the precise conditions to which the initial wave function must be submitted for this 
exponential decay to ensue. The prescription of these conditions constitutes in fact a definition of an "un
stable particle" in quantum theory. 

INTRODUCTION 

IN this paper we shall be concerned with the classi
fication of the decay regimes of unstable particles. 

The first task of the theory is that of isolating the ex
ponential decay. I t will be shown, by means of an il
lustrative model, how this can be accomplished system
atically. Furthermore, it will be shown that the 
method is sufficiently powerful to allow for the deter
mination of the precise conditions to be imposed on the 
initial wave packet for such an exponential decay. 

The mathematical apparatus has been introduced 

recently by one of us1 and applied to nonequilibrium 
statistical mechanics. Analogies with the results of Ref. 
1 are numerous and will occasionally be noted. Previous 
treatments of unstable states are surveyed in Ref. 2. 

For illustration we shall carry out our calculations 
with a model due to Wigner and Weisskopf.3,4 

1 G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963). This paper con
tains the lectures on the Foundations of Non-Equilibrium Sta
tistical Mechanics, given at Rutgers (1961-62). 

2 M. Goldberger and K. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964). 

3 E. Wigner and V. Weisskopf, Z. Physik 63, 62 (1930). 
4 M. Wellner, Phys. Rev. 118, 875 (1960). 


